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Abstract. A generalization of the Lorentz reciprocal theorem is developed for the creeping flow of micropolar 
fluids in which the continuum equations involve both the velocity and the internal spin vector fields. In this case, 
the stress tensor is generally not symmetric and conservation laws for both linear and angular momentum are 
needed in order to describe the dynamics of the fluid continuum. This necessitates the introduction of constitutive 
equations for the antisymmetric part of the stress tensor and the so-called couple-stress in the medium as well. The 
reciprocal theorem, derived herein in the limit of negligible inertia and without external body forces and couples, 
provides a general integral relationship between the velocity, spin, stress and couple-stress fields of two otherwise 
unrelated micropolar flow fields occurring in the same fluid domain. 

1. Introduction 

In his original paper, whose publication is commemorated by the appearance of this centen- 
nial volume, Lorentz [1] derived a reciprocal theorem governing the slow viscous flow of 
incompressible, Newtonian fluids. This theorem subsequently found wide use in applications, 
especially to problems pertaining to general low Reynolds number flows occurring in flu- 
id/particle systems, such as suspensions, dispersions, emulsions, porous media and clusters 
composed of a finite number of particles - -  including one as a lower limit. Contributions in 
this context prior to 1965 are documented in the textbook by Happel and Brenner [2]. Many 
developments have occurred since, and some of these are reviewed by other contributors 
to the present volume. Our contribution is concerned with deriving a generalization of the 
Lorentz (linear momentum) reciprocal theorem to the case where angular momentum is sen- 
sible too, as embodied in the existence of antisymmetric and couple stresses. In this sense, our 
analysis extends Lorentz's analysis from structureless to intemally structured fluid continua 
in which spin plays a kinematical role comparable to that played by the velocity in classical 
problems. 

2. Micropolar fluids 

In micropolar or structured fluids [3-5], in which the internal microstructure may possess 
its own spin (and therefore angular momentum), the stress tensor quantifying the continuum 
dynamics is not necessarily symmetric. An example of such a fluid is the well-known magnetic 
liquid ('ferrofluid') which consists of a stabilized colloidal suspension of Brownian magnetic 
particles in a nonmagnetic liquid host [6]. In such fluids, Cauchy's moment of momentum 
principle provides an independent equation which must be solved simultaneously with the 
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equations of conservation of mass and linear momentum. The complete set of conservation 
laws thus [3,4] consists of the continuity equation 

Dp 
+ pXT.v = 0, (1) 

Dt 
together with Cauchy's laws of linear and angular momentum: 

Dv 
p-~-t- = V.P  + pF e, (2) 

pk2Dt  = V.C + Px + pG e. (3) 

Here, v and w respectively denote the velocity and spin vector fields existing at each point x 
of the fluid continuum, p is the mass density, k the radius of gyration field defined such that 
k2w is the specific (i.e., per unit mass) internal angular momentum density. The vector fields 
F e and G e represent the respective specific external body force and body couple densities, 
whereas P and C are the stress and couple-stress dyadics. Moreover, Px - -E  : P = - ~  : pa 
is the pseudovector-equivalent of the antisymmetric portion, pa - (p _ pt)/2, of the stress 
tensor, in which E is the unit alternating pseudoisotropic triadic (whose Cartesian tensor 
equivalent is the permutation symbol, eijk). Equivalently, pa = (E.Px)/2. The superscript 
' t '  designates the transpose operator. As usual, D/Dt  = O/Ot + v.~7 denotes the substantial 
time derivative. 

For a 'Newtonian-like' micropolar fluid the linear constitutive equations relating the stress- 
es to the kinematical velocity and spin fields are respectively given by [7] 

P = - p l  + ~l(XT.v) + 2#Ev + l¢.px,  (4) 

C = VlI(V.oa) + 2v2Ew, (5) 

in which 

Px = ( ( ½ V X v -  t~), (6) 

and with p the thermodynamic pressure. The symmetric, traceless rate-of-strain and rate-of- 
spin-strain dyadics are defined by 

Ev = l [Vv  + (Vv) t] - ]I(V.v),  (7) 

Eo: = ½[Vw + (Vw) t] - } I (V.w) .  (8) 

The material scalar pairs (n, #) and (vl, v2) represent the respective (dilatational, shear) 
classical and spin viscosities, whereas ( is the so-called vortex-viscosity. Additionally, I is the 
unit isotropic tensor and (V x v)/2 is one-half the vorticity, the latter providing the local rate 
of rotation of a fluid element. 

2.1. ENERGY AND THERMODYNAMIC CONSIDERATIONS 

In order to obtain the equation of conservation of energy for a micropolar fluid, one recognizes 
that the specific density C is given by 

E = u + l v . v  + 1k2, , . , , ,  
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consisting of internal (U) as well as translational and rotational kinetic energies. The conser- 
vation of energy for an arbitrary material volume Vm(t) with bounding surface Sin(t) is thus 
given by 

d f v  m p C d V = f v  ~ p ( F e . v + G e . w ) d V + f s  [ n . ( P . v + C . w ) - n . q ] d S .  
(t) (t) m(t) 

(9) 

Here, n is the outward unit normal at the surface and q represents the flux of heat by thermal 
conduction. The volume integral on the right-hand-side (RHS) provides the work done per 
unit time by the external body forces and couples acting upon the material volume, whereas 
the surface integral provides the rate at which work is being done by the stresses and couple- 
stresses acting across the bounding surfaces, together with the total rate of heat flow across the 
moving surface. With the aid of Reynolds transport theorem and Gauss' divergence theorem, 
the differential form of the above energy equation is found to be 

DE 
p-if[ = pFe.v + pGe.w + XT.(P.v) + V ' ( C ' w )  - V-q.  (10) 

Upon dot multiplying (2) and (3) respectively by v and w and using the results to simplify 
(10) one finds that 

DH = p f : ~ ' v + C  f p-~-~- : X;'w - P× .w - V.q .  (11) 

It is often convenient to define a 'mean'  pressure by p = - ( I  : P) /3 .  Upon combining this 
definition with constitutive equation (4), one thus finds the relation between the mean and 
thermodynamic pressures to be 

p = p - aV .v .  (12) 

To simplify further, constitutive Eqs. (4) and (5) are employed and use is made of the general 
identity that, if S' and S" are arbitrary symmetric dyadics while A ' and A" are antisymmetric 
(with A~x = , e  : A ~ and A~ = - e  : A" their pseudovector-equivalents), 

(S' + A') : (S" + A") = S' : S" + A' : A" = S' : S" - -  ~l A'× .A×," 

to obtain 

pf : V v  = - p ( V . v )  + 2#Ev :Ev + P × . ( ½ V X v ) ,  (13) 

C t : ~Tw = ul (V.w)  2 + 2uzE~o : E~. (14) 

Substitution of these results in the internal energy Eq. (11) allows the latter to be written as 

DU 
P Dt = - p V . v  + 2#Ev : Ev + P× .(½V x v  - w) + ul (V .w)  2 + 2u2E,o : E,o - V .q .  

(15) 

Now, according to the combined first and second laws of thermodynamics, we have that 

dH = T dS - pdV,  
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where S is the specific entropy and V the specific volume, the latter being related to the density 
by ); = 1/p. In conjunction with the continuity Eq. (1), the above thermodynamic relation is 
equivalent to 

DH _ T D S  PXr.v. 
Dt  Dt  p 

Now, the generic entropy balance Eq. (8) is 

D S  
p - ~  + V.Js = a, (16) 

where Js = q / T  is the entropy flux density vector and a is the volumetric rate of entropy 
production [8]. Upon using the preceding relations in conjunction with Fourier's law of heat 
conduction 

q = -kXrT ,  

[with k the thermal conductivity, not to be confused with the radius of gyration appearing 
in Eq. (3)] and the constitutive Eq. (6) for the pseudovector of the antisymmetric stress, we 
thereby obtain 

T, ,  =  IVTI 2 + m + 2#Ev :Ev + v l (V .w)  2 + 2v2Eo., :E~ + ~I½V x v - 0312 . 

(17) 

As cr is required to be non-negative as a consequence of irreversibility, and to vanish if and 
only if all the gradients are identically zero, it follows that k together with the viscosity 
coefficients ~;, #, Vl,//2 and ( appearing in (17) are all positive. 

3. The reciprocal theorem 

Consider the 'creeping flow' of an incompressible micropolar fluid, for which the inertial 
terms appearing on the left-hand-sides (LHS) of Eqs. (2) and (3) are negligible. In the further 
absence of external body forces and couples, the mass, linear and angular momentum Eqs. 
(1)-(3), respectively, reduce to the forms: 

V.v = 0, (18) 

V . P  = 0, (19) 

XT.C + P× = 0, (20) 

although the constitutive equations given by (4)-(8) remain the same. 
To extend the classical Lorentz reciprocal theorem to the case of a micropolar fluid, consider 

two flow fields (v', 03~) and (v", w") occurring within the same micropolar fluid and same 
geometrical domain, respectively designated by a prime and a double prime. Both satisfy the 
field Eqs. (18)-(20) within the specified fluid domain, but with different boundary conditions 
on the surfaces bounding this domain. Prompted by the forms of the work-related, third and 
fourth terms appearing on the RHS of (10), one calculates 

W.(P' .v ')  (p')t :Wv" 2#E' v " " , 1 = = .Ev + P×.(~VXv") ,  (21) 
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-l~x .w " + (C')t : Vw" = -P'x .w" + ut(g.w')(V.w") + 2uzE~ ". E~." 

(22) 

Upon summing both sides of the last two equations and making use of the constitutive relation 
(6) for 1~×, it is found that the terms on the RHS of the resulting sum are invariant under 
interchange of the prime and double prime affixes. Therefore, the same is tree of the LHS, 
whereupon it follows that 

V.(P'.v" + C'.w") = V.(IV'.v ' + C".to'). (23) 

Upon integrating both sides of the latter over the entire volume occupied by the fluid and 
making use of the divergence theorem, the final form of the generalized Lorentz reciprocal 
theorem for micropolar fluids is found to be 

fS n'(l~'v" + C' .w")dS = fs  n.(P".v' + C".6o') dS, (24) 

in which S represents the closed surface bounding the fluid domain internally (including a 
possible surface at 'infinity') and n is the unit normal pointing into the fluid on the bounding 
surface 5'. 

3.1. APPLICATION: SYMMETRY OF THE MICROPOLAR HYDRODYNAMIC RESISTANCE 

MATRIX 

As an application of this general theorem, it will now be shown that the resistance "matrix" 
which relates the hydrodynamic force and torque on a rigid body to its translational and angular 
velocities in an unbounded micropolar fluid which is at rest at infinity is both symmetric and 
positive-definite. Thus, consider the problem of translation and rotation of a rigid body of 
arbitrary shape through an otherwise quiescent (and spinless) micropolar fluid under creeping 
flow conditions for which the governing equations are given by (18)-(20), together with the 
constitutive relations (4)-(8). The standard, no-slip boundary conditions [9] imposed on the 
fluid velocity and spin fields are thus given by 

v = U + O x x ,  w = 1 2 ,  on Sp, (25) 

where Sp denotes the surface of the rigid particle. In the above, O is the angular velocity 
of the rigid body, U is the translational velocity of some locator-point rigidly attached to the 
body, and x is the position vector measured relative to the same locator-point. Additionally, 
we require that the fields v and w vanish at infinity. As in the case of conventional, nonpolar 
fluids one can show that the rate of decay in the fluid of these fields at infinity is such that 
v = O(Ix1-1) and ~ = O(Ix1-2) as [xl o0, so that only the surface Sp of the particle 
contributes to the surface integrals appearing in (25). In such circumstances the reciprocal 
theorem (25) reduces to one involving integrals over Sp only. 

Since the governing equations and boundary conditions are linear, the disturbance pressure, 
velocity and spin fields are necessarily linear in the vectors U and O ,  as too are the stress 
and couple-stress fields. As a result, the hydrodynamic force and torque (the latter about the 
particle locator-point) exerted by the fluid on the body, namely 

F = f~ n.PdS, (26) 
d ~  p 
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T = f s  [xx (n.P) + n.C] dS, (27) 
P 

are also linear in U and ~ .  As such, proceeding as in the classical case [2] where angular 
momentum effects are absent, evaluation of the integrals in (26) and (27) will produce a 
general linear relation of the (hybrid, vector/partitioned-matrix) form 

I F ]  = _  [RFu  RFa (28) 

in which the R entries within the resistance matrix on the RHS are each dyadics (3 x 3 matrices) 
which are independent of U and O .  They depend only upon the size and shape of the body 
(including - -  with the exception of the RFU entry - -  the choice of particle locator point) in 
addition to depending upon the various viscosity coefficients characterizing the fluid. 

To prove that the resistance matrix is symmetric, suppose that the given rigid body under- 
goes two different translational and rotational motions, respectively characterized by (U ~, :/i) 
and (U", O"). The resulting hydrodynamic force and torque on the body in each case are 
respectively given by (28), with primes or double-primes affixed to F, T, U and I'/, but not 
to the resistance tensors R (since the latter do not depend on the translational and angular 
velocities of the body). For the present flow, which is quiescent far away from the rigid body, 
the only surface integrals which contribute to the generalized Lorentz reciprocal theorem (24) 
lie on the body surface Sp. With the aid of boundary conditions (25), the LHS of (24) can be 
written as 

f s  [n.P'.(U" + O x x )  + n .C .O"]  dS = fsp {(n.P').U" + [xx (n.P') + n.C'l .O"} dS, 
P 

which is the same as 

F ! 

The RHS of (24) can be computed in a similar manner, resulting in an identical expression, 
but with primes and double-primes interchanged. Upon making use of expression (28) for the 
forces and torques, the reciprocal theorem thus shows that 

U" ] [U" /'2"].[ RFU RFn [RFu RFn].[l.l,,]. (29) 
RTU R T a ] ' [ U ; ]  = [U '  /2 '] 'LRTu RTn 

Being a scalar, each side of the preceding equation is equal to its own transpose. Thus, 
upon taking the transpose of one side of the above equation and canceling the arbitrary 
translational-angular velocity vector pair which appears symmetrically on both sides of the 
resulting equation, one establishes that 

[RF  RFo] RFo]t 
RTU Rrn  = RTU RTa ' (30) 

completing the proof of symmetry of the resistance matrix. The corresponding relations for 
the individual resistance entries appearing in this matrix are of the respective forms 

RFu = R~u , R T n = R ~ n  , RFo = R~u. (31) 
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In the last of this trio of equations, note that the resistance dyadic RFn which relates the 
hydrodynamic force on the body to its angular velocity is equal to the transpose of the 
resistance dyadic RTU, which relates the torque on the body to its translational velocity. 

To prove that the resistance tensor is positive-definite, we observe that - F . U  - T./2 
represents the rate at which the body does work on the surrounding fluid. Since this rate must 
be nonnegative, one can write 

Ryv RTn " /2 ~> 0, (32) 

in which equality holds only when both U = 0 and O = 0. Since this inequality must hold 
for arbitrary choices of the vectors U a n d / 2 ,  the resistance matrix is seen to be positive- 
definite. This positivity extends to the 'direct' resistance dyadics RFU and RTfl, but not to 
the 'coupling' dyadic RFn or its kinetic equivalent RTU. 

Questions of the origin-dependence of these three hydrodynamic resistance dyadics, includ- 
ing the existence of a 'center of reaction' (at which point Ren = R~n), simplifications afford- 
ed by the geometric symmetries of particles, and other similar issues are essentially identical 
to comparable issues existing for the classical case [2], where angular momentum consider- 
ations are absent (corresponding to (, Ul and u2 being identically zero). In this same vein, 
following well-established paths existing for the classical case, derivative relations p such 
as extensions of Faxrn's laws for the hydrodynamic resistances of spherical and nonspherical 
particles suspended in arbitrary fields of flow a can be generalized to include internal spin 
effects. In the latter context, it should be noted that detailed solutions of the basic micropolar 
creeping flow equations (18)-(20) subject to the boundary conditions (25) already exist for 
spheres and some other body shapes, such as spheroids [10--13]. 
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